Posts

Showing posts from November, 2020

Optical head-mounted display

Image
An optical head-mounted display ( OHMD ) is a wearable device that has the capability of reflecting projected images as well as allowing the user to see through it, similar to augmented reality technology. OHMD technology has existed since 1997 in various forms, but despite a number of attempts from industry, has yet to be commercialised.

Types

Various techniques have existed for see-through HMDs. Most of these techniques can be summarized into two main families: "Curved Mirror" (or Curved Combiner) based and "Waveguide" or "Light-guide" based. The curved mirror technique has been used by Vuzix in their Star 1200 product, by Olympus, and by Laster Technologies. Various waveguide techniques have existed for some time. These techniques include diffraction optics, holographic optics, polarized optics, and reflective optics: Diffractive waveguide – slanted diffraction grating elements (nanometric 10E-9). Nokia technique now licensed to Vuzix. Holographic waveguide – 3 holographic optical elements (HOE) sandwiched together (RGB). Used by Sony and Konica Minolta. Polarized waveguide – 6 multilayer coated (25–35) polarized reflectors in glass sandwich. Developed by Lumus. Reflective waveguide – thick light guide with single semi-reflective mirror. This technique is used by Epson in their Moverio prod

Input devices

Head-mounted displays are not designed to be workstations, and traditional input devices such as keyboards do not support the concept of smart glasses. Input devices that lend themselves to mobility and/or hands-free use are good candidates, for example: Touchpad or buttons Compatible devices (e.g. smartphones or control unit) Speech recognition Gesture recognition Eye tracking Brain–computer interface

Recent developments

2012 edit On 17 April 2012, Oakley's CEO Colin Baden stated that the company has been working on a way to project information directly onto lenses since 1997, and has 600 patents related to the technology, many of which apply to optical specifications. On 18 June 2012, Canon announced the MR (Mixed Reality) System which simultaneously merges virtual objects with the real world at full scale and in 3D. Unlike the Google Glass, the MR System is aimed for professional use with a price tag for the headset and accompanying system is $125,000, with $25,000 in expected annual maintenance. 2013 edit At MWC 2013, the Japanese company Brilliant Service introduced the Viking OS, an operating system for HMD's which was written in Objective-C and relies on gesture control as a primary form of input. It includes a facial recognition system and was demonstrated on a revamp version of Vuzix STAR 1200XL glasses ($4,999) which combined a generic RGB camera and a PMD CamBoard nano depth camera.

Market structure

Analytics company IHS has estimated that the shipments of smart glasses may rise from just 50,000 units in 2012 to as high as 6.6 million units in 2016. According to a survey of more than 4,600 U.S. adults conducted by Forrester Research, around 12 percent of respondents are willing to wear Google Glass or other similar device if it offers a service that piques their interest. Business Insider's BI Intelligence expects an annual sales of 21 million Google Glass units by 2018. According to reliable reports, Samsung and Microsoft are expected to develop their own version of Google Glass within six months with a price range of $200 to $500. Samsung has reportedly bought lenses from Lumus, a company based in Israel. Another source says Microsoft is negotiating with Vuzix. In 2006, Apple filed patent for its own HMD device. In July 2013, APX Labs founder and CEO Brian Ballard stated that he knows of 25-30 hardware companies who are working on their own versions of smart glasses, some of

Comparison of various OHMDs technologies

Image
This section needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. ( July 2013 ) (Learn how and when to remove this template message) Combiner technology Size Eye box FOV Other Example Flat combiner 45 degrees Thick Medium Medium Traditional design Vuzix, Google Glass Curved combiner Thick Large Large Classical bug-eye design Many products (see through and occlusion) Phase conjugate material Thick Medium Medium Very bulky OdaLab Buried Fresnel combiner Thin Large Medium Parasitic diffraction effects The Technology Partnership (TTP) Cascaded prism/mirror combiner Variable Medium to Large Medium Louver effects Lumus, Optinvent Free form TIR combiner Medium Large Medium Bulky glass combiner Canon, Verizon & Kopin (see through and occlusion) Diffractive combiner with EPE Very thin Very large Medium Haze effe